Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We formulate a connection between a topological and a geometric category. The former is the idempotent completion of the (horizontal) trace of the affine Hecke category, while the latter is the equivariant derived category of the (semi-nilpotent) commuting stack. This provides a more precise and improved version of our proposal in Gorsky and Neguț (Proc Lond Math Soc (3) 126(6): 2013–2056, 2023).more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
We show the existence of cluster -structures and cluster Poisson structures on any braid variety, for any simple Lie group. The construction is achieved via weave calculus and a tropicalization of Lusztig’s coordinates. Several explicit seeds are provided and the quiver and cluster variables are readily computable. We prove that these upper cluster algebras equal their cluster algebras, show local acyclicity, and explicitly determine their DT-transformations as the twist automorphisms of braid varieties. The main result also resolves the conjecture of B. Leclerc [Adv. Math. 300 (2016), pp. 190–228] on the existence of cluster algebra structures on the coordinate rings of open Richardson varieties.more » « lessFree, publicly-accessible full text available April 1, 2026
-
abstract: In this manuscript we study braid varieties, a class of affine algebraic varieties associated to positive braids. Several geometric constructions are presented, including certain torus actions on braid varieties and holomorphic symplectic structures on their respective quotients. We also develop a diagrammatic calculus for correspondences between braid varieties and use these correspondences to obtain interesting decompositions of braid varieties and their quotients. It is shown that the maximal charts of these decompositions are exponential Darboux charts for the holomorphic symplectic structures, and we relate these charts to exact Lagrangian fillings of Legendrian links.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The double Dyck path algebra$$\mathbb {A}_{q,t}$$ and its polynomial representation first arose as a key figure in the proof of the celebrated Shuffle Theorem of Carlsson and Mellit. A geometric formulation for an equivalent algebra$$\mathbb {B}_{q,t}$$ was then given by the second author and Carlsson and Mellit using the K-theory of parabolic flag Hilbert schemes. In this article, we initiate the systematic study of the representation theory of the double Dyck path algebra$$\mathbb {B}_{q,t}$$ . We define a natural extension of this algebra and study its calibrated representations. We show that the polynomial representation is calibrated, and place it into a large family of calibrated representations constructed from posets satisfying certain conditions. We also define tensor products and duals of these representations, thus proving (under suitable conditions) the category of calibrated representations is generically monoidal. As an application, we prove that tensor powers of the polynomial representation can be constructed from the equivariant K-theory of parabolic Gieseker moduli spaces.more » « less
-
Abstract We describe the universal target of annular Khovanov–Rozansky link homology functors as the homotopy category of a free symmetric monoidal linear category generated by one object and one endomorphism. This categorifies the ring of symmetric functions and admits categorical analogues of plethystic transformations, which we use to characterize the annular invariants of Coxeter braids. Further, we prove the existence of symmetric group actions on the Khovanov–Rozansky invariants of cabled tangles and we introduce spectral sequences that aid in computing the homologies of generalized Hopf links. Finally, we conjecture a characterization of the horizontal traces of Rouquier complexes of Coxeter braids in other types.more » « less
-
Abstract We compare the (horizontal) trace of the affine Hecke category with the elliptic Hall algebra, thus obtaining an “affine” version of the construction of Gorsky et al. (Int. Math. Res. Not. IMRN2022(2022) 11304–11400). Explicitly, we show that the aforementioned trace is generated by the objects as , where denote the Wakimoto objects of Elias and denote Rouquier complexes. We compute certain categorical commutators between the 's and show that they match the categorical commutators between the sheaves on the flag commuting stack that were considered in Neguț (Publ. Math. Inst. Hautes Études Sci. 135 (2022) 337–418). At the level of ‐theory, these commutators yield a certain integral form of the elliptic Hall algebra, which we can thus map to the ‐theory of the trace of the affine Hecke category.more » « less
-
Abstract We establish some new relationships between Milnor invariants and Heegaard Floer homology. This includes a formula for the Milnor triple linking number from the link Floer complex, detection results for the Whitehead link and Borromean rings, and a structural property of the $$d$$-invariants of surgeries on certain algebraically split links.more » « less
An official website of the United States government
